Corona chemistry in Titan.

نویسندگان

  • R Navarro-Gonzalez
  • S I Ramirez
  • G Matrajt
  • V Basiuk
  • E Basiuk
چکیده

The atmosphere of Titan is constantly bombarded by galactic cosmic rays and Saturnian magnetospheric electrons causing the formation of free electrons and primary ions, which are then stabilized by ion cluster formation and charging of aerosols. These charged particles accumulate in drops in cloud regions of the troposphere. Their abundance can substantially increase by friction, fragmentation or collisions during convective activity. Charge separation occurs with help of convection and gravitational settling leading to development of electric fields within the cloud and between the cloud and the ground. Neutralization of these charged particles leads to corona discharges which are characterized by low current densities. We have therefore, experimentally studied the corona discharge of a simulated Titan's atmosphere (10% methane and 2% argon in nitrogen) at 500 Torr and 298 K by GC-FTIR-MS techniques. The main products have been identified as hydrocarbons (ethane, ethyne, ethene, propane, propene+propyne, cyclopropane, butane, 2-methylpropane, 2-methylpropene, n-butane, 2-butene, 2,2-dimethylpropane, 2-methylbutane, 2-methylbutene, n-pentane, 2,2-dimethylbutane, 2-methylpentane, 3-methylpentane, n-hexane, 2,2-dimethylhexane, 2,2-dimethylpentane, 2,2,3-trimethylbutane, 2,3-dimethylpentane and n-heptane), nitriles (hydrogen cyanide, cyanogen, ethanenitrile, propanenitrile, 2-methylpropanenitrile and butanenitrile) and a highly branched hydrocarbon deposit. We present the trends of hydrocarbons and nitriles formation as a function of discharge time in an ample interval and have derived their initial yields of formation. The results clearly demonstrate that a complex organic chemistry can be initiated by corona processes in the lower atmosphere. Although photochemistry and charged particle chemistry occurring in the stratosphere can account for many of the observed hydrocarbon species in Titan, the predicted abundance of ethene is too low by a factor of 10 to 40. While some ethene will be produced by charged-particle chemistry, the production of ethene by corona processes and its subsequent diffusion into the stratosphere appears to be an adequate source. Because little UV penetrates to the lower atmosphere to destroy the molecules formed there, the corona-produced species may be long-lived and contribute significantly to the composition of the lower atmosphere and surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Astrobiology and habitability of Titan

Largest satellite of Saturn and the only in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects. (i) Its analogies with planet Earth, in spite of much lower temperatures, with, in particular, a methane cycle on Titan analogous to the water cycle on Earth. (ii) The presence of an active organic chemistry, involv...

متن کامل

/Ar discharge – a simulation of Titan’s atmosphere chemistry

The formation of negative ions produced in a negative point-to-plane corona discharge fed by a Ar/N2/CH4 gas mixture has been studied using mass spectrometry. The measurements were carried out in flowing regime at ambient temperature and a reduced pressure of 460 mbar. The CN− anion has been found to be the most dominant negative ion in the discharge and is believed to be the precursor of heavi...

متن کامل

Negative ions formed in N2/CH4/Ar discharge – A simulation of Titan’s atmosphere chemistry

The formation of negative ions produced in a negative point-to-plane corona discharge fed by a Ar/N2/CH4 gas mixture has been studied using mass spectrometry. The measurements were carried out in flowing regime at ambient temperature and a reduced pressure of 460 mbar. The CN− anion has been found to be the most dominant negative ion in the discharge and is believed to be the precursor of heavi...

متن کامل

Pii: S0273-1177(01)00057-6

Although lightning has not been observed in Titan's atmosphere, the presence of methane rain in the troposphere suggests the possibility of electrical activity in the form of corona and/or lightning discharges. Here we examine the chemical effects of these electrical processes on a Titan simulated atmosphere composed of CH4 in N2 at various mixing ratios. Corona discharges were simulated in two...

متن کامل

Corona discharge experiments in admixtures of N2 and CH4: a laboratory simulation of Titan's atmosphere

A positive corona discharge fed by a N2:CH4 mixture (98:2) at atmospheric pressure and ambient temperature has been studied as a laboratory mimic of the chemical processes occurring in the atmosphere of Titan, Saturn’s largest moon. In-situ measurements of UV and IR transmission spectra within the discharge have shown that the main chemical product is C2H2, produced by dissociation of CH4, with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Uchu Seibutsu Kagaku

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 1998